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ABSTRACT-A model for shallow cumulus convection is 
formulated in which the vertical momentum equation and 
horizontal divergence equation are combined to produce a 
diagnostic equation for the perturbation pressure field. 
These equations, together with the first law of thermo- 
dynamics and equation of continuity of water substance, 
are averaged horizontally over the cloud area (a cylinder 
of constant radius). The resulting set can be integrated in 

time to study the life cycle of a nonprecipitating cumulus 
initiated by release of a small buoyant element. The re- 
sults indicate that the perturbation pressure field plays an 
essential role by reducing the extremely sharp gradients in 
velocity near the cloud top, which are common to most 
other one-dimensional models. Inclusion of the pressure 
field also makes it possible to predict the radial scale at 
which the maximum cloud growth rate will occur. 

1. INTRODUCTION 

In  the past several years, considerable effort has been 
directed toward the numerical simulation of cumulus 
clouds as well as the parameterization of the effects of 
cumulus clouds on the large-scale motions. The present 
status of cumulus modeling and parameterization has 
recently been reviewed by Ogura (1973). Therefore, 
previous work is discussed only briefly here. 

Although a few cumulus simulations have involved 
two-dimensional numerical models, most of the modeling 
work to date has been concentrated on one-dimensional 
models in which only the vertical variation of the cloud 
structure is analyzed. This emphasis on one-dimensional 
modeling has been partly a matter of computational 
speed and efficiency. But it is also justified by the fact 
that the vertical distribution of the various fields is of 
primary importance both for understanding the micro- 
physical processes within the cloud and modeling the 
effect of the cloud on the larger scale motions. 

The various one-dimensional models that have been 
described in the literature to date may be divided into 
two classes: quasi-Lagrangian bubble or plume models 
(e.g. , Simpson and Wiggert 1969) and time-dependent 
Eulerian models (e.g., Ogura and ‘Takahashi 1971). 
The former type involves upward integration in height 
following the rise of the bubble or plume. As pointed 
out by Simpson (1971), the vertical distribution of in- 
cloud properties given by such a model cannot be inter- 
preted as a vertical prome for a given instant in time 
but rather should be viewed as giving the cloud properties 
at  each level as the active thermal rises through that 
level. in this type of model, the entrainment rate into 
the bubble or plume is a specified parameter of the model 
and is usually assumed to vary inversely with the cloud 
radius. 
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In the Eulerian models, on the other hand, the vertical 
momentum equation, thermodynamic energy equation, 
and the equation of continuity for water substance are 
integrated numerically to determine the evolution of 
the various fields as functions of height and time. In 
these models, the entrainment is generally divided into 
a dynamic entrainment necessary to satisfy mass con- 
tinuity requirements and a turbulent entrainment due 
to lateral mixing by small-scale eddies. The ,Eulerian 
models are able to provide vertical profiles of the various 
fields over the entire life cycle of the cloud. Possibly 
the most elaborate example to date is the model of Ogura 
and Takahashi (1971) in which a number of the important 
microphysical processes are included to simulate the 
life cycle of a thunderstorm cell. 

,Despite the great differences among the various one- 
dimensional models proposed to date, they nearly all 
share a common defect. This defect is the assumption 
that the pressure distribution at  any point within the 
cloud is exactly equal to the hydrostatic environmental 
pressure at, the same level. As has been shown by List 
and Lozowski (1970), however, there must be a sub- 
stantial pressure perturbation within the cloud. In  general, 
the perturbation vertical pressure gradient force within 
the cloud will be the same order of magnitude as the 
buoyancy term in the vertical momentum equation. 
Some attempts have been made to allow for the per- 
turbation pressure effect by using a “reduced gravity” 
in the buoyancy term. However, such an empirical 
procedure cannot model the complete role of the pressure 
field. In particular, it  is the perturbation pressure field 
that suppressess the growth of clouds as the cloud radius 
is increased. Thus, explicit inclusion of the pressure 
field is necessary if the model is to predict the preferred 
cloud radius. 

The purpose of this paper is to demonstrate that the 
perturbation pressure field can be included in a one- 
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dimensional .model, and that the pressure field has a 
profound effect on the growth of even moderate size 
cumulus clouds. To keep the calculations as simple as 
possible, we limit the discussion to shallow nonprecipitat- 
ing cumuli. All microphysical processes may then be 
neglected, and the anelastic equations of Ogura and 
Phillips (1962) may be used to model the dynamics. A 
somewhat similar study has been carried out by Lee 
(1971). However, his method of incorporating the pressure 
perturbation requires more severe assumptions than the 
present approach. 

2. FORMULATION OF THE MODEL 

The equations that describe the model are essentially 
the set used by Ogura (1963) in his two-dimensional 
simulation of shallow moist convection. However, we 
replace the horizontal momentum equation by the diver- 
gence equation obtained by applying the horizontal 
divergence operator to the horizontal momentum 
equation. The resulting set of prediction equations 
may be written in column vector form as: 

aA a 
at a2 
-=-V*(VA)-- (wA)+S 

where 

and 

A = { ; }  

J 
Here 6, w, 4, e, and p designate departures from the 
environmental values of the. horizontal divergence, vertical 
velocity, specific entropy, potential temperature and water 
substance mixing ratio, respectively. The pressure is 
expressed in terms of the nondimensional variable u = 
( p / ~ ~ ) ~  where p is the perturbation pressure, po= 1000 mb, 
and K= R/cP. Additional symbols that require definition 
are 8, the basic state potential temperature, qz,  the liquid 
water mixing ratio, 40, the environmental specific entropy, 
and qo, the environmental mixing ratio. All other symbols 
have their conventional meaning. The specific entropy, 
4, in the anelastic approximation is defined as 

where L is the latent heat of sublimation and po is the 
departure from the environmental water vapor mixing 
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ratio. Finally, the vertical velocity and horizontal diver- 
gence are related by the continuity equation for a 
Boussinesq fluid, 

(3) 

It is assumed here that the environmental vertical velocity 
is zero so that the vertical mass transport by the cloud 
is not compensated locally. 

Following the scheme of Asai and Kasahara (1967), we 
assume that the cloud is a cylindrical column of constant 
radius and average the equations horizontally over the 
cloud area. Using the notation of Asai and Kasahara, we 
define the following fields : 

and (4) 
M 

A'=A-X, A','=A,-&. 

Here, r and X are the radial and azimuthal coordinates, 
r=a is the cloud radius, A' denotes a deviation'froml, 
the horizontal mean for the cloud, and A: denotes a 
deviation from 2,; the azimuthal mean at  r=a. With 
the aid of eq (4), the horizontal average of eq (1) may be 
written as - - 

aA- ($d,+u','Ap)-d (ZX+w")+B (5) at a a2 

where uYALdesignates the lateral eddy exchange across 
the cloud boundary and w'A' is the vertical eddy flux. To 
close the system, we must express Gal Aa, and the eddy 
fluxes in terms of the horizontal averaged variables. 

Taking the horizontal average of eq (3), we obtain 

- 

Following Asai and Easahara, we now assume that za 
has the environmental value (&=O) wherever there is 
entrainment ( za<O)  and has the cloud value (d,=z) 
wherever there is detrainment ( l a > O ) .  Thus, 

Next, adapting the eddy exchange hypothesis, we let 

-V - u,A,=- A a 
and 

c 

(8) 



where the eddy exchange coefficient, v, is defined by V =  

dalwl, with c2 ,O. l  an empirical constant. This representa- 
tion for the lateral eddy fluxes is identical to the form used 
by Asai and Kasahara (1967) and Ogura and Takahashi 
(1971). However, those authors did not explicitly include 
the vertical eddy flux term; instead, they used an upstream 
differencing scheme, which produces a computational 
damping similar to the vertical eddy viscosity used here. 

The horizontally averaged divergence equation may 
now be written, with some approximations, as 

%=(&+b) --- (zs)+cpek27;-- a; - - a z  a - 
a2 a2 

For simplicity, we have neglected the eddy terms, 

av ' 
aZ P, v w t =  -) and 2J(u', v'), 

and we have assumed that the perturbation pressure field 
varies sufficiently smoothly so that its Laplacian can be 
approximated by a single normal mode solution with 

where k is a measure of the horizontal scale of the perturba- 
tion pressure field. 

This representation of the horizontal Laplacian of 
pressure is the key approximation in the model. Evidence 
from two-dimensional cloud modeling (Schlesinger 1972) 
suggests that the pressure perturbation decays exponen- 
tially away from the center of the cloud at  a rate that 
depends on the vertical scale of the buoyant thermal. For 
simplicity in the present calculations, however, we 
assume that U ( T )  may be approximated by the first term 
in a Fourier-Bessel expansion satisfying the conditions 
that au/ar=O at T=O and u=O at T=U. Thus, k is the 
first root of Jo(ku)=O, or k=2.4/a. 

The remaining horizontally averaged prognostic equa- 
tions are as follows: 

- a+-N aE a _- -&o 2 v -  --A --- (w+)-w --- l#I+- v - , (12) at a2 aZ dz u2 :z ( 2) 
and 

(. 2). (13) 

With the aid of the continuity equation [eq (S)], we can 
now combine eq (9) and (11) to obtain the following 
diagnostic equation for a: 

To complete the system, we require from eq (2) that 

- -  - -  
where q,=qUs for saturated conditions and p,,=p for 
unsaturated air. Recalling that 2. represents a deviation 
from the environmental mixing ratio, pol we have 

- 
aus=(aus>c-a~=[(aus)c-(~os)~l+[(~os)~--~ol (16) 

where and (pus)o are the saturation mixing ratios for 
the cloud and the environment, respectively. Following 
the notation of Ogura (1963)' we can write the saturation 
mixing ratio for shallow convection as 

Res(Too) exp (g2) 
RUPO P U S =  

where R ,  is the gas constant for water vapor and e, (Too) 
is the saturation vapor pressure for an adiabatic lapse 
rate computed from the formula 

es(Too)=6.11 X 1 0 ~ 7 ~ 5 ( T o o - ~ 3 ) ~ ( T ~ 0 - 3 ~ ) ] .  (18) 
Here 

TOO=Tgrouna-' 2. 
CP 

Noting that the potential temperature within the cloud 
is ;+eo, we find from eq (16) and (17) that 

and 

Substituting from eq (20) into (15), we find that for 
saturated conditions 

U(aus~o-ao1 

L"(a0s)o I+- 
C$,e2 

c p  7 (21) - 
e, = 

while for unsaturated conditions 

Comparing eq (21) and (22), we see that if - i>&sLthen 
es>i(,,,. Thus, at each time step, we compare - -  es and e,,, to 
test for saturation. If &2e,,,, we set e=& and let 

- - -  
pz= p- pus. (23) 

- -  
If ~s<e,nE, we let e=e,,, and set &=O.  This treatment of 
the moist thermodynamic processes is similar to Ogura's 
(1963) approach. However, the equations have been 
simplified here by treating all in-cloud fields as departures 
from known environmental fields. The evolution of a 
moist convective element of known radius may now be 
computed by integrating eq (11)-(13) forward in time 
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and using eq (14) , (15) , and (23) to diagnose G, f, and at  
each time step. The kite-difference scheme employed in 
the present model is the two-step Euler backward- 
difference scheme in time (Haltiner 1971, page 225), and 
centered differences in space. 

3. NUMERICAL RESULTS 

Since the primary purpose of this paper is to demon- 
strate the role of the perturbation pressure field, we have 
run two parallel sets of numerical experiments; one in 
which the perturbation pressure effects were included, and 
a second in which a was set to zero. In all of the runs 
discussed here, environmental conditions are specified as 
follows : 

e = ~ O O O K ,  

po=lOOO mb, 

el?={ 3.5"K/kmJ 0<2<3 km 
dz 9.8"K/kmJ 2>3 km 

PO=I%L~)~, and 

@= 1-0.052 ( Z  in km). 

The boundary conditions are 
- - -  
w=e=p=o at z=O, 5 km, 

and, for pressure, a=O at z=5 km and &//az=O at z=O. 
As initial conditions, we set w = q = O  and 

- -  

e= { 68 sin2 ( * z / o . ~  km), 2 ~ 0 . 6  km 
0, z>0.6 km 

where 68=0.5OC in most cases. Runs were made for a num- 
ber of specified cloud radii from a=0.2 km to a=2 km. 

In figure 1, the vertical velocity is shown as a function 
of time and height for a run in which the cloud radius 
was 0.8 km and 60=0.5"C. For approximately the first 
- 10 min, the maximum value of the vertical velocity, 
Wmax, grows approximately exponentially. The growth rate 
of Gmax is conveniently defined as the slope of the straight 
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FIGURE 2.-Growth rate of as a function of cloud radius with 
the effects of the perturbation pressure included (solid line) and 
with ;= 0 (dashed line). 

line fitted to a plot of log wmax versus time during the 
period of exponential growth. Figure 2 is a plot of the 
growth rate determined in this manner as a function of 
cloud radius. For small radii, the growth rates are limited 
by turbulent entrainment. As the radius increases, the 
nonhydrostatic part of the perturbation pressure field 
decreases, and the hydrostatic part tends to balance the 
buoyancy force. Thus, for cloud radii greater than ap- 
proximately 1 km, the role of the pressure field is to 
substantially reduce the growth rate. If the perturbation 
pressure field is neglected, the growth rate increases 
linearly with increasing radii because of the reduced role 
of entrainment. Thus, when the perturbation pressure 
field is included, we can run the model for several assumed 
cloud radii to determine the radius for which the growth 
rate is a maximum. In this manner we can predict the 
"preferred" radial scale - - - -  for the cumulus. 

Vertical profiles of w, e, U, p, and p, for a cloud of radius 
0.8 km are shown in figures 3 and 4 at t=12 min during 
the active development stage. Inclusion of the perturba- 
tion pressure field reduces the rate of rise of the thermal 
and also concentrates the maxima in s, a, and;, at the 
head of the rising thermal. The vertical averages of these 
fields, however, are not changed much .by the inclusion 
of pressure in the model. The primary role of the pressure 
field in this case is to spread the vertical acceleration 
field over a larger depth, thus reducing the concentration 
of &/az both above and below the rising thermal. Dy- 
namic - entrainment and detrainment near the level of 
ymzx are thus both decreased, and, hence, the fields of 
8, p, and C l  may remain more concentrated at  that level. 

Clearly, for the shallow nonprecipitating cumulus 
model presented here, the perturbation pressure field 
does not have a dramatic impact on the cloud profiles for 
the small radius associated with maximum growth. 
However, we have demonstrated that inclusion of the 
pressure field is essential if we wish to predict the preferred 
radial scale. The pressure field has a profound effect on 

' 
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FIGURE 3.-Vertical profiles of w, 5, and (r a t  t =  12 min for 2 cloud 
of radius 0.8 km. Dashed lines are for the case with 5=0;  u= 10-4 
corresponds to a pressure perturbation of about 0.35 mb. 

the growth of larger clouds. For this reason, we expect 
that the inclusion of perturbation pressure should be 
important in modeling deep, precipitating cumulonimbus 
convection. Finally, the vorticity equation might also be 
horizontally averaged as was done here for the divergence 
equation. In that case, it should be possible to utilize 
a one-dimensional model to study the vertical transport 
of vorticity by the cumulus. 
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